Roads and Bridges - Drogi i Mosty
18, 1, 2019, 5-24

Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction

Michał A. Glinicki Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Daria Jóźwiak-Niedźwiedzka Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Aneta Antolik Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Kinga Dziedzic Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Karolina Gibas Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw
Published: 2019-03-31

Abstract

The paper presents the results of investigations into the reactivity of domestic aggregates produced from selected sedimentary rocks, carried out using the new testing methods, consistent with the RILEM and ASTM methods, implemented by GDDKiA (Polish General Directorate for National Roads and Motorways) documents. The range of the investigations covered coarse crushed aggregates produced from limestone, dolomite, sandstone and greywacke rocks, potentially suitable for making strong and durable concrete. No reactive forms of quartz were found in the mineralogical composition of the limestone aggregates and the dolomite aggregates. Micro- and cryptocrystalline quartz occurred in the particles of the greywacke aggregates and the sandstone aggregates. On the basis of the expansion of mortar and concrete specimens the aggregates produced from the sedimentary rocks were classified into the reactivity categories: R0, R1 and R2. A sodium-potassium-calcium silicate gel, whose composition (consistent with that reported in the literature) was characteristic of the alkali-silica reaction products, was found. The investigations resulted in a consistent assessment of the reactivity of the aggregates.

Keywords


alkali-aggregate reaction, cement, concrete, dolomite aggregate, expansion, greywacke, limestone, quartz, reactive minerals, sandstone.

Full Text:

PDF

References


West G.: Alkali-aggregate Reaction in Concrete Roads and Bridges. Thomas Telford, London, 1996

Kurdowski W.: Chemia cementu i betonu. Stowarzyszenie Producentów Cementu, Kraków, 2010

Owsiak Z.: The course of alkali-aggregate reactions in concrete. Archives of Civil Engineering, 54, 3, 2008, 593-608

Góralczyk S., Filipczyk M.: Aktualne badania reaktywności alkalicznej polskich kruszyw. Kruszywa Mineralne t.1., Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2017, 31-41

Jarmontowicz A., Krzywobłocka-Laurów R.: Ocena potencjalnej reaktywności kruszywa żwirowego w stosunku do alkalii na podstawie badań instrumentalnych. Instrukcja 317, Instytut Techniki Budowlanej, Warszawa, 1993

Glinicki M.A., Litorowicz A.: Crack system evaluation in concrete elements at mesoscale. Bulletin of the Polish Academy of Sciences -Technical Sciences, 54, 4, 2006, 371-379

Sanchez L., Fournier B., Jolin M., Duchesne J.: Use of damage rating index to quantify alkali-silica reaction damage in concrete: fine versus coarse aggregate. ACI Materials Journal, 113, 4, 2016, 395-407

PN-B-06714-46:1992 Kruszywa mineralne – Badania – Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką

PN-B-06714-47:1988 Kruszywa mineralne – Badania – Oznaczanie potencjalnej reaktywności alkalicznej – Oznaczanie zawartości krzemionki rozpuszczalnej w wodorotlenku sodowym (NaOH)

PN PN-B-06714-34:1991 Kruszywa mineralne – Badania – Oznaczanie reaktywności alkalicznej

ASTM C227-10 Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method) (Withdrawn 2018)

ASTM C 289-07 Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method) (Withdrawn 2016)

Naziemiec Z., Garbacik A., Adamski G.: Reaktywność alkaliczna krajowych kruszyw. Kruszywa Mineralne t.1, Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2017, 123-132

RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. State-of-the-Art Report of the RILEM Technical Committee 219-ACS, Eds. Philip J. Nixon and Ian Sims, Springer, Vol. 17, 2016

ASTM C1778 Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete, 2016

Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 N roztworze NaOH w temperaturze 80°C, Załącznik nr 1. Ogólna Specyfikacja Techniczna, D-05.03.04, Nawierzchnia z betonu cementowego, GDDKiA, Warszawa, 2018

Instrukcja badania reaktywności kruszyw w temperaturze 38°C według ASTM C1293/RILEM AAR-3, Załącznik nr 2. Ogólna Specyfikacja Techniczna, D-05.03.04, Nawierzchnia z betonu cementowego, GDDKiA, Warszawa 2018

Adamski G., Garbacik A., Glinicki M.A.: Reaktywność alkaliczna krajowych kruszyw - założenia i cele projektu ASR-RID. Przegląd Budowlany, 87, 5, 2016, 19-21

PN-EN 12620 +A1:2010 Kruszywa do betonu

Gawenda T.: Zasady doboru kruszarek oraz układów technologicznych w produkcji kruszyw łamanych. Rozprawy Monografie, Wydawnictwa AGH, Kraków 2015

ASTM C295 -18 Standard Guide for Petrographic Examination of Aggregates for Concrete

Naziemiec Z., Pabiś-Mazgaj E.: Preliminary evaluation of the alkali reactivity of crushed aggregates from glacial deposits in Northern Poland. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 203-222, DOI: 10.7409/rabdim.017.014

Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendations. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 223-239; DOI: 10.7409/rabdim.017.015

Jacobsen U.H., Johansen V., Thaulow N.: Optical microscopy - a primary tool in concrete examination. Proceedings of the 19ICMA Conference on Cement Microscopy, Cincinnati, Ohio, USA, 1997, 275-294

Grattan-Bellew P.E.: Microcrystalline quartz, undulatory extinction and the alkali-silica reaction. In: Poole AB (ed). Proc. 9International Conference on Alkali- Aggregate Reaction in Concrete, London, 1992, 383-394

Alaejos P.; Lanza V.: Influence of equivalent reactive quartz content on expansion due to alkali silica reaction. Cement and Concrete Research, 42, 2012, 99-104

Jóźwiak-Niedźwiedzka D., Jaskulski R., Glinicki M.A.: Application of image analysis to identify quartz grains in heavy aggregates susceptible to ASR in radiation shielding concrete. Materials, 9, 4, 2016, 224-1-14, DOI: 10.3390/ma9040224

Fernandes I., Broekmans M., dos Anjos Ribeiro M., Sims I.: Assessment of the alkali-reactivity potential of sedimentary rocks. 15International Conference on Alkali-Aggregates Reaction, Sao-Paulo, Brazil, 2016

Fernandes I., dos Anjos Ribeiro M.: Broekmans M.A.T.M., Sims I. (eds.): Petrographic Atlas: Characterisation of Aggregates Regarding Potential Reactivity to Alkalis, RILEM, Springer, Dordrecht, 2016

Góralczyk S., Filipczyk M.: Aktualne badania reaktywności alkalicznej polskich kruszyw - część II. Kruszywa Mineralne t.2., Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2018, 37-48

Hou X., Struble L.J., Kirkpatrick R.J.: Formation of ASR gel and the roles of C-S-H and portlandite. Cement and Concrete Research, 34, 2004, 1683-1696

Vayghan A.G., Rajabipour F.: Quantifying the swelling properties of alkali-silica reaction (ASR) gels as a function of their composition. Journal of the American Ceramic Society, 100, 2017, 3801-3818, DOI: 10.1111/jace.14893

Thomas M.D.A., Fournier B., Folliard K.J.: Alkali-Aggregate Reactivity (AAR) Facts Book. Report FHWA-HIF-13-019, Federal Highway Administration, Washington, 2013

https://www.rilem.net/groupe/258-aaa-avoiding-alkali-aggregate-reactions-in-concrete-performance-based-concept-321 (10.12.2018)

Gibas K., Glinicki M.A., Dąbrowski M., Jóźwiak- -Niedźwiedzka D., Antolik A., Dziedzic K.: ASR performance testing of air entrained concrete exposed to external alkalis. International Conference on Sustainable Materials, Systems and Structures (SMSS2019) - Novel Methods for Characterization of Materials and Structures, Edited by I. Gabrijel, C. Grosse, M. Skazlić, Proceedings PRO 128, RILEM Publications, 2019, 59-66

Glinicki M.A., Zieliński M.: Air void system in concrete containing circulating fluidized bed combustion fly ash. Materials and Structures, 41, 4, 2008, 681-687


Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction

  
Glinicki, Michał A. et al. Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction. Roads and Bridges - Drogi i Mosty, [S.l.], v. 18, n. 1, p. 5-24, mar. 2019. ISSN 2449-769X. Available at: <>. Date accessed: 17 Jul. 2019. doi:http://dx.doi.org/10.7409/rabdim.019.001.